Differential Evolution Algorithm for System Identification and Tuning of a Fuzzy Modified Model Reference Adaptive Controller for a Coupled Tank Level Process
نویسندگان
چکیده
Abstract— Improving the transient performance of the MRAC has been a point of research for a long time. The main objective of the paper is to design an MRAC with improved transient and steady state performance. This paper proposes a Fuzzy modified MRAC (FMRAC) to control a coupled tank level process. The FMRAC uses a proportional control based Mamdani-type Fuzzy inference system (MFIS) to improve the transient performance of a direct MRAC. In addition, it proposes the application of Differential Evolution (DE) algorithm to tune the membership function parameters off-line of the FMRAC to improve its performance further. The proposed controller is called DE based Fuzzy Modified Model Reference Adaptive Controller (DEFMRAC). In this study, an MRAC, an FMRAC and the proposed DEFMRAC are designed for a coupled tank level process and their performances are compared. The coupled tank level process is modeled by using system identification procedure and the accuracy of the resultant model is further improved by parameter tuning using DE. The simulation results show that the FMRAC gives better transient performance than the direct MRAC. The results also show that the proposed DEFMRAC gives better transient performance than the direct MRAC or the FMRAC. It is concluded that the proposed controller can be used to obtain very good transient and steady state performance in the control of nonlinear processes. KeywordsModel Reference Adaptive Controller; Coupled tank process; System identification; Fuzzy modified Model Reference Adaptive Controller; Differential Evolution Algorithm; Differential Evolution based Fuzzy modified Model Reference Adaptive Controller
منابع مشابه
Decentralized Fuzzy-PID Based Control Model for a Multivariable Liquid Level System
Multivariable liquid level control is essential in process industries to ensure quality of the product and safety of the equipment. However, the significant problems of the control system include excessive time consumption and percentage overshoot, which result from ineffective performance of the tuning methods of the PID controllers used for the system. In this paper, fuzzy logic was used to t...
متن کاملTuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کاملDesign of a Model Reference Adaptive Controller Using Modified MIT Rule for a Second Order System
Sometimes conventional feedback controllers may not perform well online because of the variation in process dynamics due to nonlinear actuators, changes in environmental conditions and variation in the character of the disturbances. To overcome the above problem, this paper deals with the designing of a controller for a second order system with Model Reference Adaptive Control (MRAC) scheme usi...
متن کاملFuzzy logic controlled differential evolution to solve economic load dispatch problems
In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...
متن کاملFuzzy logic controlled differential evolution to solve economic load dispatch problems
In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...
متن کامل